汽车发动机工作原理_汽车发动机工作原理图视频
汽车发动机工作原理的今日更新是一个不断变化的过程,它涉及到许多方面。今天,我将与大家分享关于汽车发动机工作原理的最新动态,希望我的介绍能为有需要的朋友提供一些帮助。
1.汽车发动机的原理是什么
2.汽车发动机工作原理 汽车发动机的工作原理是什么
3.汽车发动机的工作原理总结
4.电喷汽车的工作原理和构造分别是什么呢
5.汽车为什么会跑 发动机图解
汽车发动机的原理是什么
(1)四冲程汽油机将空气和汽油按一定比例混合,形成汽车发动机的良好混合气。在进气冲程,混合气被吸入气缸,混合气被压缩、点燃、燃烧,产生热能。高温高压气体作用于活塞顶部,推动活塞做直线往复运动,机械能通过连杆、曲轴、飞轮机构向外输出。四冲程汽油发动机在进气冲程、压缩冲程、做功冲程和排气冲程中完成一个工作循环。(2)进气冲程活塞由曲轴驱动,从上止点运动到下止点。此时,进气门开启,排气门关闭,曲轴旋转180°。活塞在运动过程中,气缸的容积逐渐增大,气缸内的气体压力从pr逐渐降低到pa,气缸内形成一定程度的真空。空气和汽油的混合气通过进气门被吸入气缸,并在气缸内进一步混合,形成可燃混合气。由于进气系统的阻力,在进气结束时,气缸内的气体压力小于大气压力p0,即Pa=(0.80~0.90)P0。进入气缸的可燃混合气由于进气管、气缸壁、活塞顶、气门、燃烧室壁等高温部件的加热,以及与残余废气的混合,温度上升到340~400K。(3)压缩冲程在压缩冲程中,进气门和排气门同时关闭。活塞从下止点移动到上止点,曲轴旋转180°。当活塞向上运动时,工作容积逐渐减小,缸内混合物被压缩后压力和温度不断上升。当压缩结束时,压力pc可达800~2000kpa,温度可达600~750k(4)做功冲程当活塞接近上止点时,火花塞点燃可燃混合气,混合气燃烧释放出大量热能,使气缸内气体的压力和温度迅速升高。最高燃烧压力pZ为3000~6000kPa,温度TZ为2200~2800k·k,高压气体推动活塞从上止点运动到下止点,通过曲柄连杆机构向外输出机械能。随着活塞向下移动,气缸的容积增加,气体压力和温度逐渐降低。到达B点时,压力下降到300~500kPa,温度下降到1200~1500KK,在作功冲程中,进气门和排气门关闭,曲轴旋转180°。(5)排气冲程在排气冲程中,排气门打开,进气门仍然关闭,活塞从下止点运动到上止点,曲轴旋转180°。当排气门打开时,燃烧后的废气一方面在气缸内外的压力差下排到气缸外,另一方面通过活塞的挤压作用排到气缸外。由于排气系统的阻力,排气端R的压力略高于大气压,即PR=(1.05~1.20)P0。排气温度TR=900~1100K.当活塞运动到上止点时,燃烧室中仍有一定体积的废气无法排出。这部分废气称为残余废气。
汽车发动机工作原理 汽车发动机的工作原理是什么
发动机一般为四冲程,其工作原理包括进气冲程、压缩冲程、做功冲程和排气冲程。大多数汽车发动机是四冲程的。1、进气冲程
当进气门打开,排气门关闭时,活塞从上止点运动到下止点,活塞上方的气缸容积增大,产生真空度,气缸内压力下降到进气压力以下。
在真空吸气的作用下,化油器或汽油喷射装置雾化的汽油与空气体混合形成可燃混合气,由进气口和进气门吸入。进气过程持续进行,直到活塞经过下止点,进气门关闭。然后向上的活塞开始压缩气体。
2、压缩冲程
所有的进气门和排气门都关闭,气缸内的可燃混合气被压缩,混合气的温度和压力升高。在活塞上止点前,可燃混合气压力升至0.6~1.2MPa左右,温度可达330℃~430℃。
3、工作行程
当压缩冲程接近上止点时,安装在气缸盖上方的火花塞发出电火花,点燃压缩的可燃混合物。可燃混合气燃烧后放出大量热量,缸内气体压力和温度迅速上升,最高燃烧压力3~6MPa,最高燃烧温度2200℃~2500℃。
高压气体推动活塞快速运动到下止点,通过曲柄连杆机构对外做功。在工作冲程开始时,进气门和排气门关闭。
4、排气冲程
在工作冲程结束时,排气阀打开。由于此时气缸中的压力高于大气压力,高温废气迅速从气缸中排出。这个阶段属于自由排气阶段,高温废气以局部音速通过排气阀排出。
随着排气过程的进行,进入强制排气阶段,活塞运动超过下止点到达上止点,强制排出气缸内的废气。当活塞到达上止点附近时,排气过程结束。
发动机的技术特点
1、发动机气门驱动机构采用液压支承滚珠摇臂式结构,与现在一般汽油机上普遍采用的液压挺杆式气门驱动机构相比,这种新颖的气门驱动机构具有摩擦扭矩相对较小的优点,因此所需的驱动力亦小,从而可有效减小发动机功耗,降低油耗。
2、为有效地减轻整车重量,1.4升汽油机采用铝合金缸体,取得了十分明显的轻量化效果。
3、采用专用材料和经特殊工艺加工的塑料进气管代替传统金属进气管,不仅收到轻量化效果,而且可以有效地减小进气管壁阻力,提高进气效率,增大发动机功率。
4、采用先进工艺加工的涨断式连杆,利用专用涨断设备将加工完毕的连杆大头孔涨断,而不是原先采用的锯开,磨削工艺。这样可利用涨断连杆锯齿状“哈夫”面,确保绝对准确的紧固定位,从而减小摩擦力和延长连杆使用寿命。
汽车发动机的工作原理总结
1、汽车发动机工作原理:是通过燃烧气缸内的燃料,产生动能,驱动发动机气缸内的活塞往复的运动,由此带动连在活塞上的连杆和与连杆相连的曲柄,围绕曲轴中心作往复的圆周运动,而输出动力的。
2、汽车发动机是为汽车提供动力的装置,是汽车的心脏,决定着汽车的动力性、经济性、稳定性和环保性。根据动力来源不同,汽车发动机可分为柴油发动机、汽油发动机、电动汽车电动机以及混合动力等。
电喷汽车的工作原理和构造分别是什么呢
汽车发动机的工作原理总结汽车发动机工作原理
一、燃烧是关键
汽车的发动机一般都采用4冲程,分别是: 进气、压缩、燃烧、排气。完成这4个过程,发动机完成一个周期。
活塞,它由一个活塞杆和曲轴相联,过程如下:
1.活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气
2.活塞往顶部运动来压缩油气混合气,使得爆炸更有威力。
3.当活塞到达顶部时,火花塞放出火花来点燃油气混合气,爆炸使得活塞再次向下运动。
4.活塞到达底部,排气阀打开,活塞往上运动,尾气从汽缸由排气管排出。
注意:内燃机最终产生的运动是转动的,活塞的直线往复运动最终由曲轴转化为转动,这样才能驱动汽车轮胎。
二、汽缸数
发动机的核心部件是汽缸,活塞在汽缸内进行往复运动,上面所描述的是单汽缸的运动过程,而实际应用中的发动机都是有多个汽缸的(4缸、6缸、8缸比较常见)。我们通常通过汽缸的排列方式对发动机分类:直列、V或水平对置(当然现在还有大众集团的W型,实际上是两个V组成)。
不同的排列方式使得发动机在顺滑性、制造费用和外型上有着各自的优点和缺点,配备在相应的汽车上。
三、排量
混合气的压缩和燃烧在燃烧室里进行,活塞往复运动,你可以看到燃烧室容积的变化,最大值和最小值的差值就是排量,用升(L)或毫升(CC)来度量。汽车的.排量一般在1.5L~4.0L之间。每缸排量0.5L,4缸的排量为2.0L,如果V型排列的6汽缸,那就是V6 3.0升。一般来说,排量表示发动机动力的大小。
所以增加汽缸数量或增加每个汽缸燃烧室的容积可以获得更多的动力。
四、发动机的其他部分
凸轮轴 控制进气阀和排气阀的开闭
火花塞 火花塞放出火花点燃油气混合气,使得爆炸发生。火花必须在适当的时候放出。
阀门 进气、出气阀分别在适当的时候打开来吸入油气混合气和排出尾气。在压缩和
燃烧时,这两个阀都是关闭的,来保证燃烧室的密封。
倒车影像可谓是特别实用的一项发明,配合以倒车雷达使用,可以说高端大气上档次,倒车无忧,但是倒车影像不显示或者显示模糊是什么原因呢?
倒车影像不显示或者画面模糊是什么原因
1、倒车摄像头有水雾或泥巴。摄像头上有时会蒙上水雾或沾上泥巴导致影像成像模糊,擦干净即可。
2、倒车摄像头磨花。不可逆故障,无法修复,只能更换摄像头。绝大多数摄像头的表层还是很脆弱的,所以最好是在摄像头外边贴上一层保护膜。
3、倒车摄像头质量太次。配件的问题,摄像头成像效果不好,更换好点的摄像头。
倒车影像不显示的可能原因
1、显示器设置问题。此类问题还是比较多的,一般在显示器的设置里边都有一个摄像头的开关控制,开关调到“ON”即可。
2、摄像头故障。更换倒车摄像头。
3、线路问题。故障率最高的一个问题。因为倒车影像的线束是从仪表台一直拉到后备箱处的,走线较长,很可能是某一处的线束或者插头接触不好了,还需仔细排查。
倒车影像不显示多发生在倒车影像后加装的车辆上,主要还是产品的问题以及施工的问题,为了避免以后存在隐患,想要安装倒车影像的车主一定要购买好的产品,并找一家专业的维修站进行操作,不然如果真的线路出现了问题,排查起来还是很麻烦的。
;汽车为什么会跑 发动机图解
电喷发动机工作原理
电喷发动机是采用电子操纵装置.取代传统地机械系统(如化油器)来操纵发动机地供油过程.如汽油机电喷系统就是通过各种传感器将发动机地温度、空燃比.油门状况、发动机地转速、负荷、曲轴位置、车辆行驶状况等信号输入电子操纵装置.电子操纵装置根据这些信号参数.计算并操纵发动机各气缸所需要地喷油量和喷油时刻,将汽油在必定压力下通过喷油器喷入到进气管中雾化.并与进入地空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态.这种由电子系统操纵将燃料由喷油器喷入发动机进气系统中地发动机称为电喷发动机. 电喷发动机按喷油器数量可分为多点喷射和单点喷射.发动机每一个气缸有一个喷油咀,英文缩写为MPI,称多点喷射.发动机几个气缸共用一个喷油咀英文缩写SPI.称单点喷射.
汽油喷射发动机与化油器式发动机相比,突出地优点是能准确操纵混合气地质量,保证气缸内地燃料燃烧完全,使废气排放物和燃油消耗都能够降得下来,同时它还提高了发动机地充气效率,增加了发动机地功率和扭矩.电子操纵燃油喷射装置地缺点就是成本比化油器高一点,因此价格也就贵一些,故障率虽低,一旦坏了就难以修复(电脑件只能整件更换),但是与它地运行经济性和环保性相比,这些缺点就微不足道了.
分类汽油喷射型式分为机械式和电子操纵式两种.机械式汽油喷射装置是一种以机械液力操纵地喷射技术,早在30年代就应用在飞机发动机,50年代开始应用在德国奔驰300BL轿车发动机上.集成电路地出现使电子技术能在发动机上得到应用,一种更好地汽油喷射装置——电子操纵汽油喷射技术也就应运而生了.
结构任何一种电子操纵汽油喷射装置,都是由喷油油路,传感器组和电子操纵单元(微型电脑)三大部分组成.当喷射器安装在本来化油器位置上,称为单点电控燃油喷射装置;当喷射器安装在每个气缸地进气管上,称为多点电控燃油喷射装置.
原理喷油油路由电动油泵,燃油滤清器,油压调节器,喷射器等组成,电控单元发出地指令信号可将喷射器头部地针阀打开,将燃油喷出.传感器好似人地眼耳鼻等器官,专门接受温度,混合气浓度,空气流量和压力,曲轴转速等数值并传送给“中枢神经”地电子操纵单元.电子操纵单元是一个微计算机,内有集成电路以及其它精密地电子元件.它汇集了发动机上各个传感器采集地信号和点火分电器地信号,在千分之几十秒内分析和计算出下一个循环所需供给地油量,并及时向喷射器发出喷油地指令,使燃油和空气形成理想地混合气进入气缸燃烧产生动力.
历史从60年代起,随着汽车数量地曰益增多,汽车废气排放物与燃油消耗量地不断上升困扰着人们,迫使人们去寻找一种能使汽车排气净化,节约燃料地新技术装置去取替已有几十年历史地化油器,汽油喷射技术地发明和应用,使人们这一理想能以实现.早在1967年,德国波许公司成功地研制了D型电子操纵汽油喷射装置,用在大众轿车上.这种装置是以进气管里面地压力做参数,但是它与化油器相比,仍然存在结构复杂,成本高,不稳定地缺点.针对这些缺点,波许公司又开发了一种称为L型电子操纵汽油喷射装置,它以进气管内地空气流量做参数,可以直接遵照进气流量与发动机转速地关系确定进气量,据此喷射出相应地汽油.这种装置由于设计合理,工作可靠,广泛为欧洲和曰本等汽车制造公司所采用,并奠定了今天电子操纵燃油喷射装置地邹型.至1979年起美国地通用,福特,曰本地丰田,三菱,曰产等汽车公司都推出了各自地电子操纵汽油喷射装置,尤其是多气门发动机地推广,使电子操纵喷射技术得到迅速地普及和应用.到目前为止,欧美曰等主要汽车生产大国地轿车燃油供给系统,95%以上安装了燃油喷射装置.从99年1月1曰起,只有采用电子操纵汽油喷射装置地轿车才能准予在北京市场上销售.
现在电喷发动机(电子操纵汽油喷射式发动机)地使用在轿车中越来越普遍,有消息称化油器式发动机轿车在我国各大城市将很快被“消灭”.因此车主对电喷发动机地了解变得越来越重要,只有了解了电喷发动机地“脾气”,您才能更好地使用和养护爱车.
电喷发动机与化油器式发动机有很大地区别,在使用操作方法上也颇有不同.起动电喷发动机时(包含冷车起动),一般无需踩油门.因为电喷发动机都有冷起动加浓、自动冷车快怠速功能,能保证发动机不论在冷车或热车状态下顺利起动;在起动发动机之前和起动过程中,像起动化油器式发动机那样反复快速踩油门踏板地方法来增加喷油量地做法是无效地.因为电喷发动机地油门踏板只操纵节气门地开度,它地喷油量完全是电脑根据进气量参数来决定;在油箱缺油状态下,电喷发动机不应较长时间运转.因为电动汽油泵是靠流过汽油泵地燃油来进行冷却地.在油箱缺油状态下长时间运转发动机,会使电动汽油泵因过热而烧坏,所以如果您地爱车是电喷车,当仪表盘上地燃油警告灯亮时,应尽快加油;在发动机运转时不能拔下任何传感器插头,否则会在电脑中显现人为地故障代码,影响维修人员正确地判断和排除故障.
另外要注意地是,尽量不要在电喷车上装用大功率地移动式无线电话系统及无线电设备,以防止无线电信号对电脑工作产生干扰.
汽车电喷发动机的构造和工作原理 “电喷”发动机(电子控制燃油喷射发动机的简称)系统主要由各种传感器、发动机电子控制单元(ECU)和各种执行器三大部分组成。
传感器是“电喷”发动机系统的主要组成部分之一。它是ECU的“眼睛”和“耳朵”,时刻监视着系统内外的变化,使发动机始终处在一个良好的运转状态。用于“电喷”发动机中的传感器主要有:进气流量传感器、进气压力传感器、进气温度传感器、冷却液温度传感器、节气门位置传感器、曲轴位置传感器、同步信号传感器、氧传感器、爆震传感器、车速传感器。下面对它们的构造和工作原理逐一进行介绍。
一、进气流量传感器
这类传感器是决定喷油量的重要传感器。它安装在空气滤清器后的进气管前端,用来检测进气量的参数。单独检测进气流量或进气压力均能反映进气量的情况,所以有的“电喷”发动机采用进气流量式检测(如凌志LS400、宝马等),有的则采用进气压力式检测(如皇冠3.0、北京切诺基等)。
进气流量传感器的种类较多,有机械检测的翼片式进气流量计,有光电检测的卡门漩涡式流量计,有热敏元件检测的热线式流量计及它的改进型热膜式流量计。
常采用的热线式进气流量式传感器的工作原理图。为了测量进气温度(即进气流量)的变化,在进气管道中安装了两个由自金丝(或白金薄膜)做成的热敏电阻Rt和Rt’(Rt’为温度补偿电阻),与外部的R1、R2构成惠斯顿电桥。
发动机不工作时,即进气管道中的空气处于静止状态时,电桥维持在一种平衡状态,控制集成电路(IC)不起调整控制作用。发动机工作时,由于空气从热敏元件Rt、Rt’周围流过,Rt、Rt’周围的空气温度及Rt、Rt’自身的阻值均要降低(PTC特性)。所以电桥改变原平衡状态,在R1两端产生与原来不同的电压,使集成电路(IC)进行控制调整。调整的结果是使Rt两端电压升高,因此流过Rt、Rt’的电流增大,产生更多的热量。最终因温度升高,使Rt、Rt’的阻值升高,直至电桥重新达到平衡状态。
调节控制规律是:进气(空气)流量越大,电桥越不平衡,因而控制调节电压也就越高,流过Rt的热线电流也就越大。由于发动机工作时进气流量是在不断变化的,所以流过电桥上的热线电流也是不断变化的,即Rt两端的电压UO也是在不断变化的。把这个与进气量成正比变化的电压信号UO送至ECU,ECU再去控制喷油量的大小,即可使发动机转速稳定在不同的量级上。
二、进气压力传感器
这类传感器是控制喷油量大小的另一类传感器。它安装在发动机的进气歧管上,用来检测进气歧管内的绝对压力和环境大气压之间的差值。它的种类也较多,有膜片传动的可变电阻式、膜片传动可变电感式、超声波压电换能式、压敏电阻式和电容式。
图3是北京切诺基轿车采用的膜片传动可变电阻式进气压力传感器工作原理图。它的构造及工作原理类似于传统的膜片式机油压力传感器。只不过它没有触点,采用的是可变电阻形式。
来自节气门后部歧管内真空度高低的变化反映了进气压力高低的变化。在真空吸力的作用下,进气压力传感器密封腔内的膜片左右移动,膜片又带动可变电阻的滑片移动,最后使传感器输出的信号电压发生变化。ECU则根据这个随进气压力高低变化的信号电压去控制喷油量的大小。
三、进气温度传感器
这类传感器安装在进气歧管内,用来向ECU提供进气温度信息。进气温度也与喷油量的大小有关。进气温度低(如启动冷车)就要加大喷油量,进气温度高(如热车)就要减小喷油量。实际上测量进气温度的高低,也就是间接地测量进气量(空气密度)的大小。因为进气量的大小与空气的密度有关,而空气的密度又与进气温度成正比。汽车上广泛采用的是半导体热敏电阻式温度传感器,具有负的温度系数(NTC)。它的构造和工作原理很简单。
当进气温度低时,热敏电阻Rt的阻值增大,电路中的电流将减小。当进气温度高时,热敏电阻Rt的阻值将减小,电路中的电流将增大。由于回路中电流的变化,将引起Rt两端电压的变化,ECU接收到这个变化的信号电压后,也就获悉了进气温度的高低,然后去控制喷油量的大小。
四、冷却液温度传感器
这类传感器安装在冷却液管道内,用来向ECU提供发动机温度的信息。它采用的也是上述的半导体热敏电阻式温度传感器,其构造与工作原理基本相同,在此不再赘述。
五、节气门位置传感器
这类传感器与喷油量的大小有直接关系。它安装在节气门阀体上,用来向ECU提供节气门的开启状态及速度的信息。它开启的角度大小,反映着发动机的转速和负荷的情况。
节气门位置传感器有可变电阻式模拟线性输出和触点式开关型输出两种。可变电阻式线性输出的节气门位置传感器的工作原理图。
传感器可变电阻的滑片(即中间抽头)由节气门轴带动在电阻片上滑动。当节气门开启角度小时(如怠速或发动机小负荷运转时),滑片向上滑动,电阻值增大,这时从B端向ECU输入一个低的信号电压。当节气门开启角度增大时(如汽车爬坡或大负荷运转),滑片向下滑动,电阻值减小,这时从B端向ECU输入一个高的信号电压。输出信号电压的大小与节气门开度的大小成正比。ECU根据输入电压的高低,以判断发动机当前的情况,决定喷油量的大小、点火是否提前、是否需要中断辅助电器设备(如爬坡、大负荷时断开空调)等。
六、曲轴位置传感器
这类传感器是检测发动机的曲轴转角、活塞位置和发动机转速的重要传感器。它向ECU提供上述被检测对象当前所处的状态信息,它直接关系到点火正时与发动机能否启动。
曲轴位置传感器的结构形式和安装位置因不同的车型而各异。结构形式常见的有:霍尔式、磁脉冲式和光电式。安装的部位有在飞轮及飞轮壳上的,有在分电器内的,还有在曲轴前端或凸轮轴前端的。
是一种安装在飞轮上的霍尔效应式曲轴位置传感器。四缸发动机飞轮上的信号传感器结构。飞轮上有8个槽齿,每4个槽齿为1组,共分成2组。1、4两缸为一组,2、3两缸为一组,各占飞轮圆周60°。每组中每个槽间隔20°,每组相隔180°。
当飞轮上的槽经过传感器时,霍尔传感器便产生信号电压,输出高电平(5v)。当飞轮两槽间的齿经过传感器时,霍尔传感器输出低电平(0.3V)。因此当飞轮上每一个齿槽通过传感器时,都将产生一个高、低电平变化的脉冲信号。四缸发动机的飞轮每旋转一周,将产生两组脉冲信号(每组4个),把这两组脉冲信号送人ECU,ECU就可利用一组脉冲信号判断1、4两缸活塞已接近上止点,或利用男一组脉冲信号,判断2、3两缸活塞已接近上止点,然后确定何时喷油。
另外,ECU根据输入的脉冲速率,还能计算出单位时间内飞轮转过的槽齿数,也就是发动机当前的转速。
七、同步信号传感器
ECU通过曲轴位置传感器,只能判定某两个活塞(如1、4两缸)已接近上止点。但它不知道究竟是“1”缸活塞还是“4”缸活塞已接近上止点。对于“电喷”发动机按次序喷射系统来说,必须要知道是哪一个缸的活塞已接近上止点,以备喷油或点火。这就需要同步信号传感器来完成这个判缸任务。
同步信号传感器与曲轴位置传感器的结构和工作原理基本相同,它也有多种安装及结构形式。它主要由分电器轴驱动的脉冲转子和霍尔传惑器组成。图中C、D间虚线以上部分的半圆弧(180°)称作脉冲环,其与霍尔传感器配合工作产生脉冲信号。当分电器轴驱动脉冲转子转动,脉冲环从D端开始进入霍尔传感器内直至C端时,霍尔传感器输出高电平。ECU接收到高电平后,便可判定“4”缸活塞已接近上止点且为排气行程,可进行喷油。而“1”缸活塞也已接近上止点,且为压缩行程可进行点火。
当分电器轴驱动脉冲转子转动,脉冲环从c端开始离开霍尔传感器后,信号传感器输出低电平。ECU接收到低电平信号后,便可判定“4”缸活塞已接近上止点,但为压缩行程可进行点火。
而“1”缸活塞为排气行程,可进行喷油。发动机转两周,脉冲转子转一周,同步信号传感器产生的脉冲信号电压波形。
八、氧传感器
现代汽车为了减少废气排放(主要成分是一氧化碳CO、碳氢化合物HC及氮氧化物NOx),以适应排污法规的要求,普遍在排气管装有氧传感器和三元催化反应器。利用氧传感器提供反馈信息送至ECU,实现混合气空燃比的闭环控制。同时还利用三元催化反应器将废气中的CO转化(氧化)为O2,HC化合物转化(氧化)为H2O,NOx转化(还原)为O2、N2无害气体。为了达到此目的,也就是说为了使三元催化反应器能正常工作,要求混合气的空燃比必须在理论空燃比范围内(理论混合气空燃比为14.7:1)。这就需要用氧传感器测定废气中氧的含量(即空燃比大小),向ECU反馈信息,及时修正喷油量使空燃比回到理论值。
氧传感器有氧化锆式和氧化钛式(电阻型)两种。它的外表面电极插入废气管中,与废气接触,内表面电极与大气相通。氧化锆是固体电解质,它在一定的温度时能与氧气发生电离作用。当废气中的氧与大气中的氧含量有差异时,如大气中的氧浓度比废气中的氧浓度高对(混合气浓),氧离子就从大气侧的内表面电极向排气侧的外表面电极移动,于是在两个电极之间便产生一个电动势,亦即信号电压。当产生的信号电压低时(0.1v),表明废气中含氧量高,混合气稀。产生的信号电压高时(1v),表明废气中含氧量低,混合气浓。ECU根据氧传感器送来的信号电压及时修正喷油量,实行闭环控制使空燃比回到理论值,以减少排污,提高经济性。
在实际使用中,因氧化锆传感器的输出信号与温度有关(600℃左右时最佳),所以常采用图8b带辅助加热元件的工作方式。
九、爆震传感器
发动机工作时因点火时间提前过度(点火提前角)、发动机的负荷、温度及燃料的质量等影响,会引起发动机“爆震”。发生爆震时,由于气体燃烧在活塞运动到上止点之前,轻者产生噪声及降低发动机的功率,重者会损坏发动机的机械部件。为了防止爆震的发生,爆震传感器是不可缺少的重要器件,以便通过电子控制系统去调整点火提前时间。
发动机发生爆震时,爆震传感器把发动机的机械振动转变为信号电压送至ECU。ECU根据其内部事先存储的点火及其它数据,及时计算修正点火提前角,去调整点火时间,防止爆震的发生。
爆震传感器也有多种类型。常见的有压电式(共振型、非共振型)和磁致伸缩式两大类。其中压电式共振型传感器应用最多,它一般安装在发动机机体上部,利用压电效应把爆震时产生的机械振动转变为信号电压。当发生爆震时的振动频率(约6000Hz左右)与压电效应传感器自身的固有频率一致时,即产生共振现象。这时传感器会输出一个很高的爆震信号电压送至ECU,ECU及时修正点火时间,避免爆震的发生。图9(a)是压电式共振型爆震传感器输出信号电压与频率的关系。转载请注明转自“维修吧- ”
十、车速传感器
这类传感器的作用是向ECU提供汽车在怠速、减速、加速和恒速时的速度信息的。它有舌簧开关式、光电式、霍尔式等。一般安装在仪表盘内,由机械部件来驱动。
它由里程表芯子驱动的磁铁和舌簧开关组成。汽车行驶的车轮转速通过里程表芯子来驱动磁铁每旋转一周,其极性要改变一次,使舌簧开关的触点闭合和断开一次,从而产生一连串的脉冲信号电压。ECU接收到此信号后,通过计算脉冲数的多少,就可知道当前的车速状况。
“电喷”发动机除了以上传感器外,还有类似传感器的一些信号。如:空调请求信号、启动信号、蓄电池电压信号等,在这就不一一叙述了。
综上所述,传感器是“电喷”发动机的重要部件。它们的工作正常与否,直接关系到发动机工作的正常与否。在“电喷”发动机中,传感器出现的故障占有很大的比例,而ECU和执行器出现的故障相比来说要少得多。
汽车发动机工作原理动画图解析发动机是汽车的动力装置,性能优劣直接影响到汽车性能,发动机的类型很多,结构各异,以适应不同车型的需要。按发动机使用燃料划分,可分成汽油发动机和柴油发动机等类别。按发动机汽缸排列方式划分,可分成直列、V型、水平对置发动机等。发动机排量等于各汽缸工作容积之和,增加缸数可以增加发动机排量,提高发动机输出功率,还可使发动机运转平稳,减少振动与噪声,汽车发动机工作原理动画图解析:
一、直列四缸发动机工作原理动画
6缸以下的发动机汽缸多为单排直列方式,少数6缸发动机也有直列方式的。直列式发动机结构简单,价格便宜,缺点是发动机高度较高,长度较长。
二、V型六缸发动机工作原理动画
V型发动机将所有汽缸分成两组,两组相邻汽缸成一定的夹角布置在一起,可以抵消一部分振动,从侧面看汽缸呈V字形,故称V型发动机。V型发动机运转比较平稳,振动与噪声较小,高度较低,长度较短,能为驾乘舱留出更大的空间,缺点是必须使用两个汽缸盖,结构相对复杂,价格也较贵。中高级轿车上普遍采用V6发动机。V型发动机的汽缸数一般为6、8、10、12、16。据说,有的汽车公司还有V5、V7、V11等非对称式V型发动机。
三、水平对置发动机工作原理动画
今天关于“汽车发动机工作原理”的讲解就到这里了。希望大家能够更深入地了解这个主题,并从我的回答中找到需要的信息。如果您有任何问题或需要进一步的信息,请随时告诉我。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。